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The interpretation of 1968.629 Hz optical pulsations’ from SN 1987A as 

a rapidly rotating neutron star poses a challenge to models of nuclear mat- 

ter. The simultaneous requirement that a star with angular velocity Rslv = 

1.237 x 10’ s-l be stable against nonaxisymmetric perturbations and that the 

maximum non-rotating neutron star mass exceed 1.&V& (the mass of the 

binary pulsar), appears to rule out all standard equations of state.’ QCD 

calculations3 suggest that three-flavor quark matter, or “strange matter,” may 

be absolutely stable,4 the ground state of the hadrons. Neutron stars could 

convert to strange stars,‘-’ which have a very different equation of state and 

mass-radius relation from conventional neutron star models. For a range of 

hadronic parameters, the maximum rotation rate of secularly stable strange 

stars may exceed that of the half-millisecond pulsar, while the non-rotating 

maximum mass M,, > 1.52&. The low-mass companion(s) to SN 1987A, 

inferred from the a-hour modulation of the optical signal, could be stable 

strange matter lump(s) ejected around the time of collapse. 

Nascent neutron stars can convert to strange matter by a variety of routes,‘~” e.g., 

via formation of two-flavor quark matter, clustering of A particles, &on condensation,’ 

burning of neutron matter, or sparking by cosmic ray neutrinos. Once a seed of strange 

matter of baryon number A 2 10 - 100 is formed at high density, it grows without 

bound and converts the star to strange matter .s Strange stars are thus fundamentally 

distinguished from neutron stars with quark cores by the assumption that quark matter 

is stable down to zeru pressure. In the context of a bag model calculation, this assumption 

has been shown to be plausible3 for a range of values of the strange quark mass m,, the 

bag constant B (the difference in energy density between the perturbative vacuum and the 

true vacuum), and the strong coupling constant a,. (In Fig. 1, we show contours of fixed 

energy per baryon number E/A = 899 and 939 MeV in the limit a, = 0.) Although these 

three parameters have been estimated by fitting the bag model to the mass spectrum of 



light hadrons, these fits introduce additional variables, making it difficult to extract the 

values appropriate for bulk quark matter .3 In addition, the parameters m, and Q. drop 

with increasing density, so fits made at low density may not be adequate for assessing 

strange matter stability in neutron stars. (Furthermore, the bag model is probably a 

crude approximation to the behavior of bulk quark matter; more appropriate might be a 

model in which B is a dynamical variable, as in an SU(3) sigma mode1.s) In exploring 

stellar models based on strange matter, we shall therefore only impose the criterion of 

self-consistency, choosing parameters which lie in the estimated window of strange matter 

stability, E/A < 939 MeV. (Presumably, as one moves away from the stable strange 

matter parameter region, neutron stars have shrinking quark cores.) 

The equation of state for strange matter can be written 

P=;(p-4B)-$(p-B) . 

The function c(m,(4B)-‘I’, p/4B) < 0.14 is a measure of the correction to.the equation of 

state due to non-zero n, and vanishes in the limits m, = 0 (where S,U and d quarks have 

equal abundances) and m, u 1.6(4B)‘l’ ( since the s quark abundance is suppressed as m, 

approaches /L,, the chemical potential). In calculating c, we shall neglect O(a.) corrections 

due to quark interactions within the bag. These effects are small for the EOS, but they 

shift the window of strange matter stability to lower values of B.3 We have constructed 

spherical general relativistic stellar models using this equation of state. Happily, for an 

EOS of the form (l), the QCD energy scale B’l’ can be scaled out of the Oppenheimer- 

Volkoff equation. Fig. 2, which shows the resulting mass-radius relation in dimensionless 

units, is converted to physical units by a choice of bag constant. Mass sequences are 

characterized by the single dimensionless ratio m,/(4B)‘/‘. A number of consequences 

follow from this scale invariance. For example, for fixed m,/(4B)‘/‘, the ratio of the 

stellar radius to the Schwarzschild radius for maximum mass models, R,,,,/2GM,,,,,., is 

independent of B. 
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In terms of a fiducial bag constant B,‘l’ = 145 MeV (B, = 57 MeV/fms), parameters 

of the maximum mass models are given in Table 1. Also, in Fig. 1 we show contours of 

fixed radius R = 8.7,8.8,9 km for these models. Since the mass scales as M - B-l/‘, 

the maximum mass reaches a lower bound at the edge of the strange matter stability 

window, E/A = 939 MeV; there, M ,,,-= 2 1.52M, (with R,,,,. > 8.52 km). In contrast 

to some soft equations of state, this is large enough to account for the observed mass” 

of PSR 1913+16 and is consistent with other inferred binary masses; neutron star mass 

observations to date place no constraints on the allowed parameter space. 

The maximum rotation rates of neutron stars depend sensitively on the mass distri- 

bution and thereby on the equation of state. Generally, soft models are more centrally 

condensed, have smaller radii and maximum masses, and can rotate faster than stiff mod- 

els. In this sense, strange matter is an oddball, embodying elements of both soft and 

hard EOS. For example, at the low mass end, where gravity plays essentially no role in 

their structure, strange stars are approximately uniform density spheres with p ~4l3 and 

M - R3. Low mass strange stars, and the outer regions of more massive strange stars, are 

much stiffer than all neutron star models. In the central regions of strange stars near the 

maximum mass, however, pe.z 5(4B) and the equation of state gets very soft (relativistic 

fermi gas). 

Massive strange stars are thus hard on the outside, soft on the inside. The stiffness 

is reflected in the relative flatness of the density profile: for maximum mass models, 

p./p = 2.1 - 2.7, lower than or comparable to the stiffest neutron star models. On the 

other hand, for large values of B, the maximum mass strange stars have global features 

comparable to soft nuclear models. For example, consider models with constant radius 

R = 8.7 km in Fig. 1. At m, = 0, we find MIMm = 1.59Mo, with average density 

p = 1.15 x 10” gm cm-s and moment of inertia I = 1.15 x 10’s gm cm’. As one 

moves up to m,/(4B) ‘1’ = 0 75 these values drop by less than 370, while the central . , 

density decreases from 3.09 to 2.75 x lOI (the density profile flattens). By comparison, 
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for the Reid soft corei (EOS A in the Am&t-Bowers” collection), M,,,,, = 1.655M,, 

IL,,,. = 8.426 km, with p. = 3.98 x 1015, p = 1.31 x 10” gm cm-s, and Z = 1.05 x 10” gm 

cm’. In addition, at m, = 0, for the maximum mass strange star, the pressure-averaged 

adiabatic index P = p/(p - 4B) = 2.3, which is moderately soft. 

How fast can strange stars spin? A lower bound on the maximum rotation rate is given 

by the low mass models with m, = 0. For M < 0.5(B/B,)-1~2Mo, the ratio of central to 

average density P./P < 1.06, the pressure p. < O.O6p,, the average polytropic index ii = 

(P - 1)-r < 0.1, and the post-Newtonian corrections to gravity are negligible. When they 

rotate, these ultra-stiff low mass stars are the nearest incarnations of Newtonian Maclaurin 

spheroids in Nature (the Maclaurin approximation improves as the mass decreases). Since 

the average density is bounded from below by F > 48, the maximum rotation rate,t set 

by the dynamical instability,‘s is a&,, = 0.67(xGp)‘lz > 6.22 x lOs(B/B,)‘/s s-r. The 

nonaxisymmetric secular m = 2 instability, driven by gravitational radiation reaction 

(GRR)“, sets in at R,.. = 0.91Rd,. Although there are also modes with m > 2 which 

become unstable at lower angular velocity, strange stars can rotate fast enough to account 

for the 1.6 ms pulsar. 

More massive strange stars can rotate faster since they have higher densities. For 

strange stars near the maximum mass, we estimate the maximum rotation speed using 

the results of Friedman, Ipser, Parkers and Butterworth’s. An absolute upper limit is set 

by the onset of equatorial (Keplerian) mass shedding. Due to relativistic effects,” at tixed 

density p the Keplerian limit OK can be larger than Cl +,. In addition, we expect that the 

relatively high density strange matter surface may rotate faster than lower surface density 

neutron star models of the same radius. By comparing with models of comparable M, 

p, and R (e.g., EGS A),” we infer a msximum equatorial velocity in the range u.,/c = 

tAlthough low maa strange stars are bound (against evaporation into tree neutrons) principally 
by the strong interactions, not gravity, their stability against rotationally induced fission into smaller 
fragments is determined by gravity. (For very small strange matter lumps, the surface tension also helps 
prevent rotational fission.) 
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0.45 - .48. This is compatible with the results of ref. 15 on rapidly rotating uniform 

density stars: for a spherical star with p./pc = 0.27 ( comparable to the central pressure- 

density ratio in maximum mass strange stars), they find v.,/c = 0.45 for the corresponding 

rotating star. In addition, for neutron stars with comparable stiffness to strange matter, 

the equatorial radius of the maximum mass rotating model is in the range’ a = 1.26-1.3R, 

where R is the radius of the spherical maximum mass model. Thus, for maximum mass 

strange stars, we expect the Keplerian limit to be flK = (1.03 - 1.14) x lO’(10 km/R) s-l. 

To account for the apparent angular velocity of the pulsar in SN 1987A, the radius of the 

spherical model must satisfy the constraint R < 8.4 - 9.2 km. Clearly, a more accurate 

determination awaits the construction of relativistic rapidly rotating strange stars. Here 

we are suggesting that, given the broad range of QCD parameter space (Fig. 1) for which 

R,,,, < 8.7 - 9 km, such an investigation would be of utmost interest. $ 

Although some conventional neutron star models, such as those based on EOS A or F,l 

also satisfy the constraint OK > f’ls~, they are secularly unstable to perturbations in the 

m = 4 or 5 mode.zJ’-so Since these GRR-driven instabilities are damped by viscosity, the 

origin of the difficulty is the relatively low viscosity of hot young neutron matter. In this 

regard, strange matter offers two advantages. First, at equal temperature and density, the 

shear viscosity of strange matter*’ 7, N 9.7 x 10’~(a,/o.13)-~/“(p/10~~)~/~(T/10’OK)-~ g 

cm-’ s-l, is roughly an order of magnitude larger than that of nuclear matter,ll 71,, N 

9.6 x 10’5(p/10’s)g”(T/1010~)~a. Here, the strange matter viscosity due to quark-quark 

scattering has been calculated2’ to lowest order in Q., assuming the magnetic field B 2 

101”(T/lOgK)s G. (This is consistent with the observational upper bound on the field 

of SN 1987A due to the continued decline in bolometric luminosity.) Second, neutrino 

cooling in strange stars is significantly more efficient than the modified URCA process.r3 

As a result, the core temperature of a two year-old strange star is estimated to be N lo* 

K, as opposed to II 10s K for neutron stars. Since the shear viscosity scales as T-‘, 

$Tb ia in contrast to a recent claim that strange stars cannot account for the pulsar in SN 1987A.” 
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the present strange star viscosity, 0 N 6 x lo5 cm’ s-l, is a factor - lo3 larger than 

that for young neutron stars. Consequently, GRR-driven secular instabilities are more 

effectively damped in strange stars. Using previous estimates of the viscous damping 

timescale,“~‘s~10 we find that the m 2 4 modes are stable. For the m = 3 mode, we inferi 

f&s 2 0.96RK for this range of viscosity. This reduces the maximum non-rotating radius 

estimated above to the range R < 8.1 - 8.8 km. 

The reported 8 hour modulation of the optical pulsar period has been interpreted as 

evidence for a Jupiter-mass companion to SNR 1987A.’ Since strange stars are bound 

by the strong force rather than gravity, they have no minimum stable mass. Thus, plan- 

etary mass strange matter debris ejected in an asymmetric supernova collapse, or shed 

in a rapidly rotating (super Keplerian) early post-collapse phase, would not disintegrate. 

Furthermore, strange matter lumps have comparable density to strange stars, so they can 

be ejected without being disrupted by tidal forces. This would circumvent the difficulties 

of more contrived planet formation scenarios, e.g, those which must invoke rapid disk 

formation and instability. 

The 1987A pulsar data also appears to have a second amplitude and phase modulation, 

with a period of N 2 hours. If this modulation is attributed to a second companion, it 

implies a Neptune-mass planet on a highly eccentric orbit with semi-major axis around 

4 x 10s miles.‘* In order to survive tidal disruption, such a satellite must have a mean 

density p 2 25 g crnm3. This is much higher than the density of any planet-like object, 

while the inferred mass is well below the lower mass limit for white dwarfs. The only 

object we know of that can fit this scenario is a strange matter lump. An alternative 

explanation is modulation due to precession of the pulsar; this hypothesis can be tested 

with additional data. If precession is ruled out, the case for strange matter would be 

impelling. 

This work was supported in part by DOE and by NASA, through grant NAGW-1340, 

at Fermilab. 
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Figure Caption 

Fig. l.- The strange matter parameter space. Solid curves marked 899 and 939 are 

contours of constant energy per baryon number (in MeV) for bulk strange matter (from 

Ref. 3). Dashed curves are contours of constant radius R = 9,8.8,8.7 km for non-rotating 

maximum mass models. Also shown are lines of constant m,/(4B)‘l’ = 1.2,l.O and 0.5. 

Fig. 2.- Mass M(4BG3)‘/’ versus radius R(4BG)‘j” relation for strange stars, for 

strange quark masses m./(4B) ‘1’ = 0, .5,1.0,1.2. Crosses mark maximum mass models. 

Also shown is the minimum radius for stable uniform density stars, R = (9/8)2GM. 
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Table 1 - Maximum Mass Models* 

f%(4B)-"' M,.,(B/B,)“” R,..(B/B,)‘~Z p,(B/B.)-’ g cme3 p(B/B.)-’ R,/ZGM,,, 

‘Fiducial bag constant B.“’ = 145 MeV. 



m, (MeV) 

c2 
c; 

0 0 E 

I I I I I I I I I I I I II I I I I I I I I I I I I I I 



b b c w 
I I I I I I I I 


